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Abstract
Type-II hidden symmetries of the linear, two-dimensional and three-
dimensional wave equations are analysed. These hidden symmetries are Lie
point symmetries that appear in addition to the inherited point symmetries when
the number of independent and dependent variables of a partial differential
equation is reduced by a Lie point symmetry. The provenance of these hidden
symmetries of partial differential equations is identified to be the same as found
recently for some nonlinear partial differential equations. The appearance of
Type-II hidden symmetries depends not only on the Lie symmetries used but
on the order in which the symmetries are applied. The presence of Type-II
hidden symmetries of partial differential equations complicates the prediction
of symmetry reductions based on the Lie algebra associated with the original
Lie point symmetries.

PACS numbers: 02.20.Qs, 02.20.Sv, 02.30.Jr

1. Introduction

Many scientific and engineering problems are formulated in terms of partial differential
equations (PDEs). Analyses of the symmetries of partial differential equations have produced
many useful analytical and numerical solutions. The symmetries may be the classical Lie
symmetries or generalized symmetries [1–8]. The ultimate aim of the symmetry analysis is to
discover solutions of the PDEs that obey the boundary and initial conditions.

The classical Lie symmetries of PDEs are now mostly calculated symbolically by
computer programs. The number of dependent and independent variables of a PDE can
be reduced by one if a Lie symmetry is used to define new variables. The resultant reduced
differential equation loses the symmetry used to reduce the number of variables and it may
lose other Lie symmetries depending on the structure of the associated Lie algebra [9]. For

0305-4470/06/205739+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 5739

http://dx.doi.org/10.1088/0305-4470/39/20/008
http://stacks.iop.org/JPhysA/39/5739


5740 B Abraham-Shrauner et al

many PDEs the Lie symmetries at each subsequent reduction are the inherited Lie symmetries
from the original PDE. There are exceptions to this rule although this fact [5, 10, 11] may not
be widely known. We recently presented an explanation for the appearance of Lie symmetries
of a reduced differential equation that were not inherited from the preceding nonlinear PDE
[12]. These symmetries are Type-II hidden symmetries but differ in origin from Type-II
hidden symmetries of ordinary differential equations (ODEs) [13–25]. The Type-II hidden
symmetries of ODEs were found by several approaches including solvable structures that
involve differential forms [21]. The differential forms had been used previously to analyse
symmetries of PDEs and the prolongation Lie algebra of soliton equations [26, 27]. The
significance of these Type-II hidden symmetries is that there may be more symmetries in
the subsequent reduced differential equations than can be predicted from the Lie algebra
of the original PDE. The general premise of this paper is that increased understanding of
Type-II hidden symmetries as a part of Lie symmetries is a useful endeavour and may
lead to improvements in the solution of differential equations. The research was initially
motivated by several questions: (1) the occurrence of Type-II hidden symmetries of PDEs,
(2) the provenance of Type-II hidden symmetries of PDEs and (3) the prediction of Type-II
hidden symmetries from the original PDE. New topics have subsequently have arisen: (4) the
possibility of missing Type-II hidden symmetries if only inherited symmetries are used in the
reduction of PDEs and (5) new techniques to find all Lie point symmetries in reduced PDEs.
The last is important if computer programs do not compute all the symmetries of the PDEs.
Topic (3) is not discussed in this paper but it depends on topics (1) and (2).

The Type-II hidden symmetries of two common linear PDEs, the two-dimensional
and three-dimensional wave equations, and their descendants are presented here. The Lie
symmetries of the linear wave equations in rectangular, Cartesian coordinates are well known.
On the other hand the existence of the Type-II hidden symmetries in the reductions of these
wave equations does not appear to have been reported with one exception [5] until recently [28].
The wave equations have extensive physical applications so that any additional exact solutions
could be of interest. The analysis of the Type-II hidden symmetries of the wave equations is
not exhaustive; for example, a travelling wave solution of the linear three-dimensional wave
equation reduces it to a linear two-dimensional wave equation.

The provenance of Type-II hidden symmetries of the descendant (reduced) differential
equations of two nonlinear PDEs was found to be inherited symmetries of one or more other
PDEs that reduced to the same descendant differential equations. It was clear that the Type-II
hidden symmetries of these PDEs were not found from nonlocal or contact symmetries as was
true for ODEs. This holds since only variable transformations of the PDEs are used. The
provenance of the Type-II hidden symmetries of the linear wave equations is the same as that
identified for the nonlinear PDEs analysed recently although the provenance is more subtle.
These hidden symmetries of PDEs are not the Type-I hidden symmetries that disappear when
the number of the variables is reduced [29], nor are they nonlocal hidden symmetries [30] or
Q-conditional symmetries of PDEs that can be hidden [31].

2. Type-II hidden symmetries of the linear, three-dimensional wave equation

The linear, three-dimensional wave equation is

uxx + uyy + uzz − utt = 0 (1)

where u is the wave function, x, y and z are the spatial coordinates and t is the time normalized
by the wave speed. The Lie point symmetries are identified by the group generators
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Ui = ξ i
x

∂

∂x
+ ξ i

y

∂

∂y
+ ξ i

z

∂

∂z
+ ξ i

t

∂

∂t
+ ηi

u

∂

∂u
, i = 1, . . . , 16,

(2)
U∞ = Fu(x, y, z, t)

∂

∂u
.

The infinitesimals ξ i
x, ξ i

y, ξ
i
z , ξ i

t and ηi
u are functions of x, y, z, t and u. There are 16

group generators and U∞ where Fu(x, y, z, t) is a solution of the linear PDE (1). The Lie
symmetries in (2) are known [7], were checked by the computer program LIE [32], and are
listed in (A.1) in the appendix. Stephani [5] gave only the symmetries used in reduction.

We next follow the successive reductions of the numbers of variables of (1) as performed
by Stephani [5] until an ODE is reached. The symmetries used (in order) are scaling, rotation
in the x–y plane and Lorentz transformation or pseudo rotation. The general rule is that the
number of independent and dependent variables is reduced by one when new variables are
defined with one Lie point symmetry. The inherited Lie point symmetries are identified from
the commutator of the symmetry used to reduce the number of variables Uα and another group
generator Uj :

[Uα,Uj ] = C
αj

k Uk. (3)

If C
αj

k = 0 or α = k, the symmetry of Uj is inherited. Otherwise the symmetry is lost.
The wave equation is reduced by the scaling symmetry to

(1 − x̄2)wx̄x̄ + (1 − ȳ2)wȳȳ + (1 − z̄2)wz̄z̄ − 2x̄ȳwx̄ȳ − 2x̄z̄wx̄z̄

− 2ȳz̄wȳz̄ − 2x̄wx̄ − 2ȳwȳ − 2z̄wz̄ = 0 (4)

with x̄ = x/t, ȳ = y/t, z̄ = z/t and w = u. The inherited Lie point symmetries of (4) are

Vi = ξ i
x̄

∂

∂x̄
+ ξ i

ȳ

∂

∂ȳ
+ ξ i

z̄

∂

∂z̄
+ ηi

w

∂

∂w
, i = 1, . . . , 7,

(5)
V∞ = Fw(x̄, ȳ, z̄)

∂

∂w
.

The infinitesimals in (5) are given in (A.2) in the appendix and Fw(x̄, ȳ, z̄) is a solution of
(4). The symmetries in (A.1) inherited in (A.2) are indicated in the appendix. The determining
equations for the inherited Lie point symmetries of (4) were computed by Maple and solved
using Maple after the symmetries were not found by the computer program LIE [32] and the
computation by hand seemed formidable. The inherited Lie symmetries were shown to be the
only Lie symmetries of (4).

The second reduced PDE uses the symmetry of the rotation in the original x–y plane that
is inherited as V4 in (A.2) in the variables of (4). The resultant PDE is

4v(1 − v)wvv − 4vswvs + (1 − s2)wss + (4 − 6v)wv − 2sws = 0 (6)

with v = x̄2 + ȳ2, s = z̄. The three Lie point symmetries of (6) are

X1 = 2sv
∂

∂v
+ (s2 − 1)

∂

∂s
, X2 = w

∂

∂w
, X∞ = Fw(v, s)

∂

∂w
(7)

where Fw(v, s) is a solution of (6). Again the determining equations for the inherited Lie
point symmetries of (6) were computed by Maple and solved using Maple as LIE did not find
them and are the only Lie symmetries of (6).

The final reduction is to an ODE and is by the Lie point symmetry X1. The ODE is

σwσσ + wσ = 0, (8)

with σ = v
1−s2 . The ODE has two inherited symmetries and six Type-II hidden symmetries.

The symmetries can be determined by the computer program LIE or by a hand calculation.
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However, the simplest way to find the symmetries is to note that if we transform the independent
variable to γ = ln σ , then the ODE becomes

wγγ = 0. (9)

This ODE is known to have the maximal number of Lie symmetries for a second-order
ODE which is eight Lie point symmetries. The eight Lie symmetries of (8) are represented by

Yj = ξ j
σ

∂

∂σ
+ ηj

w

∂

∂w
, j = 1, . . . , 8 (10)

and infinitesimals ξ
j
σ and η

j
w are given in (A.3) in the appendix. Stephani [5] identified only

one hidden symmetry, Y3 = σ ∂
∂σ

.
Type-II hidden symmetries of (8) are inherited symmetries of other PDEs than (6) that

reduce to (8). If we restrict ourselves to the reduction of PDEs by the symmetry X1, another
PDE that reduces to (8) is

v2wvv + vwv = 0 (11)

where w(v, s). The determination of (11) is subtle even though its reduction to (8) is simple.
This PDE can be guessed from (8) but was originally found by reverse transformations (see
[12] for details but we review the procedure here). In the reverse transformations a group
generator Xβ that is a function of (v, s) is assumed to reduce to a hidden symmetry, here
represented by Y3. Then X1 and Xβ obey

[X1, Xβ ] = C
1β

1 X1. (12)

In this case we calculate Xβ to be

Xβ = ξs

∂

∂s
+ ξv

∂

∂v
(13)

where ξs = C
1β

1 (1 − s2) tanh−1 s, ξv = v
(
1 − 2sξs

1−s2

)
. The expression for ξs can be more

general but a more general form for (11) has not been found. Two invariants from Xβ

are added together to form (11). Other invariants are calculated but they contain factors of
tanh−1 s. These factors do not disappear upon reduction of the invariants by the symmetry of
X1. Since the two invariants in (11) are the most general invariants for one hidden symmetry,
other invariants from the remaining hidden symmetries cannot be included in (11). There may
be other ODEs that reduce to (8) if another symmetry is used in the reduction but these have
not been identified.

3. Type-II hidden symmetries of the two-dimensional wave equation

The linear two-dimensional wave equation is

uxx + uyy − utt = 0. (14)

The first set of reductions of this PDE to an ODE is done by similar symmetries to those
used to reduce the linear three-dimensional wave equation. The scaling symmetry and then
the rotation symmetry in the x–y plane complete the reduction to one ODE. Reductions to
other ODEs are also discussed. The symmetries of (14) are well known [7] and were checked
by LIE.

However, the reduced PDE is more easily analysed in circular spatial coordinates.
Therefore, the two-dimensional wave equation is rewritten as

r2wrr + rwr + wθθ − r2wtt = 0 (15)
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where r = (x2 + y2)1/2, tan θ = y/x and w = u. The Lie point symmetries of the two-
dimensional wave equation are

Ui = ξ i
r

∂

∂r
+ ξ i

θ

∂

∂θ
+ ξ i

t

∂

∂t
+ ηi

u

∂

∂u
, i = 1, . . . , 11, U∞ = Fu(r, θ, t)

∂

∂u
. (16)

Here the infinitesimals are given in (A.4) in the appendix and Fu(r, θ, t) is a solution of (15).
The reduced PDE found by the scaling symmetry U5 in (A.4) is

R2(1 − R2)wRR + R(1 − 2R2)wR + wθθ = 0 (17)

with R = r/t, u = w. The symmetries of the reduced PDE (17) were determined in several
ways. The reverse transformation from a symmetry of the reduced ODE revealed one Type-II
hidden symmetry and two others were computed from the commutators with all the inherited
symmetries. Next a hand calculation was performed with separation of variables used in the
computation of the infinitesimals. The symmetries were most easily found by a coordinate
transformation to Laplace’s equation since the symmetries of that equation are known. If we
let z = ln

(
R

1+
√

1−R2

)
, then (17) is transformed to Laplace’s equation

wzz + wθθ = 0. (18)

Finally the Lie symmetries were checked by finding and solving the determining equations
by Maple. The symmetries of (17) are four inherited symmetries and three Type-II hidden
symmetries:

Vi = ξ i
R

∂

∂R
+ ξ i

θ

∂

∂θ
+ ηi

w

∂

∂w
, i = 1, . . . , 7

(19)
V∞ = Fw(R, θ)

∂

∂w
.

The infinitesimals are given in (A.5) in the appendix and Fw(R, θ) is a solution of (17).
The PDE (17) is reduced to an ODE by use of the rotation symmetry V1 in (A.5) to

R2(1 − R2)wRR + R(1 − 2R2)wR = 0. (20)

This ODE is invariant under the maximal number of symmetries for a second-order ODE,
eight, as it can be transferred to wzz = 0. The symmetries are represented by

Xi = ξ i
R

∂

∂R
+ ηi

w

∂

∂w
, i = 1, . . . , 8. (21)

It has three inherited symmetries and five Type-II hidden symmetries where the
infinitesimals are in (A.6) in the appendix. Interestingly, one symmetry X7 was inherited from
a Type-II hidden symmetry of the reduced PDE (17). Both reduced differential equations from
the linear two-dimensional wave equation have Type-II hidden symmetries in contrast to the
reduced differential equations of the linear three-dimensional wave equation in section 2 that
had Type-II hidden symmetries only in the reduced ODE.

Another PDE that reduces to (17) by the scaling transformation U5 in (A.4) is

r2[1 − (r/t)2]wrr + r[1 − 2(r/t)2]wr + wθθ = 0. (22)

This was determined by finding the invariants by a reverse transformation and also by an
educated guess. A PDE that reduces to the ODE (20) is

R2(1 − R2)wRR + R(1 − 2R2)wR = 0 (23)

for w(R, θ).
The reduction of the two-dimensional wave equation can be done by the same Lie point

symmetries in the reverse order. If (15) is first reduced by the rotational symmetry, no Type-II



5744 B Abraham-Shrauner et al

hidden symmetries are found in the reduced PDE as can be seen by computing the symmetries
with LIE and by computing the inherited Lie point symmetries. The Type-II hidden symmetries
appear in the subsequent reduced ODE, however.

If we further reduce the reduced PDE (17) of the two-dimensional equation by the
symmetry of a Type-II hidden symmetry, V5, in (A.5), then a solution that would not be
predicted from the Lie point symmetries of (15) is found. This is

w = K1 ln

(
1 − R cos θ

1 + R cos θ

)
+ K2 (24)

for the constants K1 and K2 and is a solution of the two-dimensional wave equation. The
‘similarity’ variable is z = R cos θ and the reduced ODE found by the symmetry is

(1 − z2)wzz − 2zwz = 0. (25)

Another solution could be found for U6 in (A.5). The crucial result is that a solution
of the two-dimensional wave equation is found that does not arise from inherited Lie point
symmetries of the two-dimensional wave equation.

4. Discussion

Type-II hidden symmetries of the three-dimensional and two-dimensional linear wave
equations have been presented. The Type-II hidden symmetries arise when the number of
variables, independent in our cases here, is reduced by the use of Lie point symmetries. The
provenance of these hidden symmetries has been shown previously to be point symmetries
inherited from other PDEs. For each of the wave equations we have identified one other PDE
from which the Type-II hidden symmetries have been inherited. The other PDEs have been
restricted to PDEs that reduce to the same reduced differential equation by the same Lie point
symmetry. For the nonlinear PDEs previously analysed the Type-II hidden symmetries were
inherited from several other PDEs but there only one Type-II hidden symmetry appeared. The
wave equations have so many Type-II symmetries in the ODEs, at least, that it is difficult to
find a common set of invariants for all the inheritable symmetries that become the Type-II
hidden symmetries. The other PDE from which the hidden symmetries are inherited are very
similar to the reduced differential equation. This may explain why the origin of Type-II hidden
symmetries had not been identified for some linear PDEs at least.

Our work indicates that, as in the case of ODES, merely looking at the Lie algebra of
symmetries of the equation under analysis is not sufficient. Lie symmetries of all intermediate
equations obtained via reduction must be calculated to see if other routes to reduction (and
hence new solutions) can be obtained. Unfortunately, at this stage, it is not possible to
determine a priori if hidden symmetries of PDEs may appear in a reduction (or indeed, as
in the case of the 3D wave equation, when they will occur). It would be of interest to see if
any prediction can be made via a differential geometric approach as was done in the case of
ODEs [21].
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Appendix

The symmetry infinitesimals of differential equations discussed in the main text are given
below except for one that is a solution of a linear PDE. Symmetry infinitesimals of (1) are

ξx = a1 − a2y − a6z + a8t + a11x − a13xt − a14xz − a15xy + a16

(
−x2

2
+

y2

2
+

z2

2
− t2

2

)
,

ξy = a2 + a5x − a7z + a9t + a11y − a13yt − a14yz + a15

(
x2

2
− y2

2
+

z2

2
− t2

2

)
− a16xy,

ξz = a3 + a6x + a7y + a10t + a11z − a13zt + a14

(
x2

2
+

y2

2
− z2

2
− t2

2

)
− a15yz − a16xz,

ξt = a4 + a8x + a9y + a10z + a11t − a13

(
x2

2
+

y2

2
+

z2

2
+

t2

2

)
− a14zt − a15yt − a16xt,

η = a12u + a13ut + a14uz + a15uy + a16ux.

(A.1)

Symmetry infinitesimals of the first reduced PDE (4) of the three-dimensional wave
equation are

ξx̄ = b1(x̄
2 − 1) + b2x̄ȳ + b3x̄z̄ + b4ȳ − b5z̄

ξȳ = b1x̄ȳ + b2(ȳ
2 − 1) + b3ȳz̄ − b4x̄ − b6z̄

(A.2)
ξz̄ = b1x̄z̄ + b2ȳz̄ + b3(z̄

2 − 1) + b5x̄ + b6ȳ

ηw = b7w.

The symmetry generators are labelled with the subscript of the expansion coefficient of
the infinitesimals. The group generators from (A.1) are inherited as follows:

U5 → V4, U6 → V5, U7 → V6, U8 → V1,

U9 → V2, U10 → V3, U12 → V7, U∞ → V∞.

Symmetry infinitesimals of the ODE (8) reduced from the second reduced PDE of the
three-dimensional wave equation are

ξσ = d3σ + d4σ ln σ + d6σ(ln σ)2 + d7σw + d8σw ln σ
(A.3)

ηw = d1 + d2 ln σ + d5w + d6w ln σ + d8w
2.

Symmetry infinitesimals of the two-dimensional wave equation (15) in circular spatial
coordinates are

ξr = a3 cos θ + a4 sin θ + a5r + a6t sin θ + a7t cos θ + a8rt

+ a9
(r2 + t2)

2
sin θ + a10

(r2 + t2)

2
cos θ

ξθ = a1 − a3
sin θ

r
+ a4

cos θ

r
+ a6

t

r
cos θ − a7

t

r
sin θ

(A.4)

+ a9

(
t2

r
− r

)
cos θ

2
+ a10

(
r − t2

r

)
sin θ

2

ξt = a2 + a5t + a6r sin θ + a7r cos θ + a8
(r2 + t2)

2
+ a9rt sin θ + a10rt cos θ

ηu = −a8
ut

2
− a9

ur

2
sin θ − a10

ur

2
cos θ + a11u.
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Symmetry infinitesimals of the PDE (17) reduced from the two-dimensional wave equation
are

ξR = b2(1 − R2) sin θ + b3(1 − R2) cos θ + b5

√
1 − R2 sin θ

+ b6

√
1 − R cos θ + b7R

√
1 − R2

(A.5)

ξθ = b1 + b2
cos θ

R
− b3

sin θ

R
+ b5

√
1 − R2 cos θ

R
− b6

√
1 − R2 sin θ

R
ηw = b4w

where the symmetries associated with the constants b1 → b4 are inherited and those with
b5 → b7 are Type-II hidden symmetries. Symmetry infinitesimals of the ODE (20) reduced
from the reduced PDE of the two-dimensional wave equation are

ξR = R
√

1 − R2

{
c1 + c2 ln

(
R

1 +
√

1 − R2

)
+ c3w + c4w ln

(
R

1 +
√

1 − R2

)

+ c5

[
ln

(
R

1 +
√

1 − R2

)]2
}

(A.6)

ηw = c4w
2 + c5 ln

(
R

1 +
√

1 − R2

)
+ c6 + c7 ln

(
R

1 +
√

1 − R2

)
+ c8w.
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